
AD-AOS4 5/3 

TECHNICAL 
^LIBRARY 

IMAGE UNDERSTANDING USING OVERLAYS 

Final Report 

to 

U. S. Army Night Vision and Electro-Optics Laboratory- 

Fort Belvoir, VA 22060 

under 

Contract DAAG53-76C-0138 

(DARPA Order 3206) 

Prepared by 

Azriel Rosenfeld 

Computer Vision Laboratory 

Computer Science Center 

University of Maryland 

College Park, MD 20742 

May 31, 1980 



IMAGE UNDERSTANDING USING OVERLAYS 

Final Report 

to 

U. S. Army Night Vision and Electro-Optics Laboratory 

Fort Belvoir, VA 22060 

under 

Contract DAAG53-76C-0138 

(DARPA Order 3206) 

Prepared by 

Azriel Rosenfeld 

Computer Vision Laboratory 

Computer Science Center 

University of Maryland 

College Park, MD 20742 

May 31, 1980 

. 



TABLE OF CONTENTS 

1. Introduction 

2. Semiannual Report for the period 
1 October 1979-30 March 1980 

3. Plans 

4. Publications 

5. Distribution list 

Appendix.  Summaries of Quarterly Reports 
on Westinghouse Subcontract 



1.  Introduction 

This project is concerned with the study of advanced 

techniques for the analysis of reconnaissance imagery.  It 

is being conducted under Contract DAAG-53-76C-0138 (DARPA 

Order 3206), monitored by the U.S. Army Night Vision Laboratory, 

Ft. Belvoir, VA (Dr. George Jones).  The Westinghouse Systems 

Development Division, as a subcontractor, is investigating 

implementation of the techniques being developed by Maryland; 

the subcontract is entitled "Architecture for higher level 

digital image processing".  Dr. Glenn E. Tisdale is program 

manager for Westinghouse, and Dr. Azriel Rosenfeld is principal 

investigator at the University of Maryland. 

The current phase of this project, initiated in April 1978, 

is a continuation of a project entitled "Algorithms and Hardware 

Technology for Image Recognition" (May 1976-March 1978) .  The 

earlier project [1] was concerned primarily with tactical 

target detection on forward-looking infrared (FLIR) imagery. 

Specific efforts involved image modeling, smoothing, noise 

cleaning, edge detection and thinning, thresholding, tracking, 

feature extraction, and classification.  Through the use of 

convergent evidence, based on coincidences between edge maxima 

and borders of above-threshold regions, excellent object extrac 

tion performance was achieved.  Westinghouse studied the CCD 

implementations of many of the algorithms that were developed. 



and breadboarded one basic function, a sorter.  Communication 

among the Maryland, Westinghouse, and NVL groups was very good 

and lead to greatly accelerated transfer of advanced image 

understanding techniques. 

The current project is concerned with the development and 

application of advanced techniques for image processing, 

feature detection, segmentation, texture and shape analysis, 

and region representation.  (The "overlays" in the project 

title refer to region representations which specify background 

areas or possible object locations.) 

Section 2 of this report summarizes accomplishments on the 

project during the past six-month period.  Summaries for earlier 

periods can be found in previous Semiannual Reports [2-4]; these 

reports also appear as Project Status Reports in the semiannual 

DARPA Image Understanding Workshops [5-8]. 

The project is expected to continue for an additional 

two-year period, under the title "Understanding Features, 

Objects, and Backgrounds".  Section 3 summarizes the proposed 

efforts to be conducted during this period. 

Section 4 lists the individual reports issued and papers 

published during the current phase of the project, arranged 

by type and subject.  The contents of the Quarterly Reports on 

the Westinghouse subcontract [9-15] are summarized in the 

Appendix. 



2.  Semiannual Report for the period 1 October 1979-30 March 1980 

In this section, activities on the project during the past 

six months are reviewed under three headings: (1) segmentation 

and texture analysis; (2) local and global shape analysis; 

(3) hierarchical representation.  Numbers in brackets refer 

to the technical reports listed in Section 4. 

2.1 Segmentation and texture analysis 

A.  Edge detection 

Edges are generally detected by thresholding the output 

of some type of difference operator; but the choice of a 

threshold for this purpose is not easy, since the histogram of 

difference values tends to fall off smoothly from a peak near 

zero.  Threshold selection becomes easier if we suppress non- 

maximum difference values (in the gradient direction) before 

histogramming.  As Figure 1 shows, this yields a histogram com- 

posed of a sharpened peak near zero together with small sets 

of higher values; the latter are likely to be good choices for 

edge points [67]. 

Difference operators for edge detection can be designed 

by fitting a polynomial surface to the gray levels in the 

neighborhood of a point, and taking the gradient of that sur- 

face as an estimate of the image gradient.  This approach can 

be generalized to the design of operators for surface detection 

in three- (or higher-) dimensional arrays of data, such as 
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Figure 1.  Honmaximum suppression as an aid in edge detection, 
(a) Image; (b) digital (Sobel) gradient magnitudes; 
(c) results of suppressing nonmaxima in the gradient 
direction; (d) results of thresholding (b) at 6; 
(e) histograms of (b) and (c) superimposed. 



those obtained by reconstructing objects from x-ray projections, 

by stacking cross-sections, or by stacking successive frames 

in a time sequence of images.  Surface detection provides re- 

sults that are more accurate and more reliable than those 

obtained by applying two-dimensional edge detectors to the 

individual slices, as can be seen from Figure 2.  This work 

is part of a Ph.D. thesis on processing and segmentation of 

three-dimensional arrays. 

B.  Pixel classification and texture analysis 

During the past reporting period, an M.S. thesis was com- 

pleted [55] on a general-purpose software package for performing 

relaxation operations on arrays of pixels.  This package allows 

the user to specify the process for computing initial probabi- 

lities, the neighborhood to be used, and the probability ad- 

justment algorithm (including the compatibility coefficients). 

As an application, a light/dark relaxation process was imple- 

mented; examples of this process can be found in earlier status 

reports [3,6]. Some analytical results regarding such two-label 

relaxation processes can be found in the sixth quarterly report 

on the Westinghouse subcontract [14]. 

Relaxation has been successfully used to improve pixel 

classification based on color, as reported elsewhere.  It can 

similarly be used to improve pixel classification in single- 

band images based on local property values such as gray level 

and "busyness".  Figure 3a shows a house picture containing 



Figure 2 (see next page for caption) 



Figure 2.  Surface detection in 3-d arrays.  (a-c) Three consecutive 
cross-sections of a CT reconstruction; (d) results of 
applying the 2-d Prewitt operator to the middle cross-section; 
(e) results of applying a 3-d Prawitt operator to the three 
cross-sections. 



five principal types of regions—sky, grass, bushes, brick, 

and shadow.  The bush and shadow classes are very difficult 

to distinguish; they have similar mean vectors, and the bush 

class is more variable, so that a maximum-likelihood classifi- 

cation (based on Gaussian fitting to the clusters defined by 

hand segmentation) misclassifies most of the shadow pixels as 

bush (Figure 3b).  The results are greatly improved when re- 

laxation is used to adjust the initial class probabilities 

for each pixel based on those of its neighbors; see Figure 3c. 

Similar improvement is obtained when the busyness values are 

iteratively smoothed, e.g. by median filtering, prior to 

clustering and classification (Figure 3d). Further details on 

these experiments can be found in [65]. 

Iterative smoothing can also be used to improve the results 

of texture classification using texture features derived from 

small windows, as described in [56]. 

C.  Iteractive segmentation 

An interactive image segmentation system is being designed 

as a contribution to the DARPA/DMA Testbed.  The system allows 

the user to designate samples of two classes (e.g., objects 

and background).  It analyzes the samples, designs a classi- 

fier to discriminate them, and displays the classification 

results to the user for evaluation; if errors are designated, 

the system attempts to modify the classifier so as to eliminate 

them.  The user need not know anything about the classification 
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process or the features that are used for classification; the 

system selects them from a prespecified repertoire.  The cur- 

rent, pilot version of the system classifies pixels based on 

gray level only; future versions will make use of various types 

of local features and will allow more than two classes. 

D.  Mosaicking 

A relaxation method for eliminating seams from photomosaics 

without degrading image detail is described in [72]. 



2.2  Local and global shape analysis 

A. Corner detection 

Several types of operators have been developed that re- 

spond to the presence of "corners" (i.e., sharp changes in edge 

direction) in an unsegmented image [69].  For example, one can 

express the rate of change in the gradient direction in terms 

of first and second derivative operators; or one can simply 

compute a digital gradient direction, and estimate its rate of 

change at P by comparing it with the directions at the appro- 

priate neighbors of P.  To measure "cornerity", the rate of 

change in gradient direction should be multiplied by the gra- 

dient magnitude, since we are only interested in corners that 

lie on edges.  Figure 4 shows a display of cornerity values for 

a simple grayscale image; the results seem reasonable. 

B. Collinearity and parallelism 

Collinear and parallel (or "antiparallel") sets of edge and 

line segments are important elements in the description of 

many types of scenes.  The following paragraphs describe general- 

purpose programs for analyzing collinearity and parallelism. A 

more specialized program that links edge segments based on gray 

level, as well as geometric, criteria, with application to the 

detection of buildings and roads on aerial imagery, will be 

described in a forthcoming report; see [85]. 

The "collinearity strength" of two segments depends on 

several factors: 
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Figure 4.  Corner detection in grayscale images.  (a) Image; 
(b) results of "cornerity" computation. 
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(a) The distance between their nearer ends, relative to 

their lengths 

(b) The angles that they make with the line joining their 

nearer ends 

(c) The distance between their farther ends, relative to 

the nearer-end distance and lengths. 

A collinearity strength measure based on a combination of 

these factors gives generally reasonable results, as illustrated 

in Figure 5 [67]. 

Collinear segments can be grouped into "clusters" based on 

their relative sizes and separations.  Several types of cluster 

merit functions can be used for this purpose; a good figure of 

merit should depend on both the segment density and the total 

segment length in the given cluster.  Examples of clusters 

defined by maximizing such a figure of merit are given in 

Figure 6. For a report on these experiments see [70]. 

Segments can also be linked based on parallelism (or, in 

the case of edge segments, antiparallelism: the dark sides of 

the edges should face in opposite directions).  The figure of 

merit for this linking process should depend on the separation 

of the segments, their lengths and the amount by which they 

overlap, as well as their parallelism (i.e., the angle between 

them).  Mutually best pairs based on this merit function can be 

linked, and the process can then be repeated with the linked pairs 

eliminated. For examples of the results obtained using this 

approach see [57] . 
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C.  The medial axis 

The medial axis (MA) of a set S is defined as the set of 

centers (and radii) of the maximal "disks" contained in S, or 

equivalently, as the set of points of S whose distances from 

the complement S are local maxima.  It can be used as a com- 

pact representation of S, and can also serve as a basis for 

approximating S by a union of "generalized ribbons" (= con- 

nected arcs of MA points, with radii specified by a "width 

function" defined along each arc). 

The MA is sensitive to noise, i.e., to errors in extracting 

the set S; thus it would be desirable to define it directly for 

unsegmented images.  This can be done using a "gray-weighted" 

concept of distance, but it is hard to reconstruct the image 

from such an MA.  Another possibility (the "SPAN": Spatial 

Piecewise Approximation by Neighborhoods) is to approximate 

the image by maximal homogeneous disks, but the approximation 

process is computationally costly.  Still another alternative 

is to assign an MA score to each point P based on the presence 

of high gradient values at pairs of positions symmetrically 

located with respect to P; but this process turns out to be 

quite sensitive to noise. 

A more robust approach to defining an MA for unsegmented 

images is based on a characterization of the MA of a set S in 

terms of shrinking and expanding operations performed on S. 

Let S    denote the result of shrinking S (i.e., deleting its 



border) n times, and similarly let S(n) denote the result of 

expanding S n times (S(ri) = ET n) ) .  Then it is not hard to 

see that Sk E (S(~k))(1) - S("k+1) is the set of MA points at 

distance k from S, so that US. is the MA.  To generalize this 

to unsegmented images, we use local MIN operations instead of 

shrinking, and local MAX operations instead of expanding; we 

can then define the "MMMAT" (= min-max MAT) as SS. .  Examples 

of such MMMATs are shown in Figure 7; for further details see 

[61] .  Approximations to the image can be reconstructed by- 

using only points having strong MMMAT values, and k's that 

make strong contributions to these values.  For examples of 

such reconstructions see Figure 8; see [73] for a report on 

this work. 

D.  Shape segmentation 

Various types of shape features, such as protrusions and 

intrusions, can be detected by comparing boundary arcs with 

their chords; for example, if the chord is much shorter than 

the arc, or if the arc does not lie close to the chord, that 

arc must be a proptrusion or intrusion.  Suppose that we measure 

various arc-chord figures of merit (e.g., arc length divided 

by chord length, or area between arc and chord divided by 

squared chord length) for every arc.  In many cases, extrema 

of such figures or merit correspond to arcs that are natural 

"pieces" of the shape, as illustrated in Figure 9.  However, 



(a)    (b) 

Figure 7.  The min-max nedial axis transformation 
(MMMAT).  (a) Images; (b) MMMATs. 
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Figure 8.  Reconstruction from the MMMAT.  (a) Original images; 
(b-d) reconstructions from the one, two, and three 
largest increments at those points having values above 
the 25th per:entile (189, 582, 226, and 462 out of 4096 
pixels, in the four cases). 



(b) 

(c) 

Figure 9.  Shape segmentation based on extrema of arc/chord functions, 
(a) Maxima of area/chord2; (b) maxima of arc/chord; 
(c) negative maxima of area. 



this approach sometimes leads to segmentations that are not 

intuitively plausible, since the extreme depend only on (e.g.) 

the curve's slopes at the arc endpoints, and not on the shape 

of the arc between the endpoints; see [59]. 

Work on shape segmentation using relaxation, described in 

earlier reports, is being extended to handle shapes with major 

occlusions or missing parts; the results will be described in 

a forthcoming report. 



2.3  Hierarchical representation 

A. Quadtrees and hextrees 

The quadtree algorithms developed on this project usually 

involve locating neighbors of a given block in the image by 

searching the tree starting from the corresponding node.  A 

general treatment of neighbor finding in quadtrees, including 

an analysis of the expected computational costs, can be found 

in [62]. 

Quadtrees are defined on the basis of recursive subdivi- 

sion into quadrants; they involve square blocks, and four 

blocks of a given size constitute a block of the next larger 

size.  For some purposes it may be desirable to define a repre- 

sentation based on hexagonal rather than square blocks, since 

such a representation would be less sensitive to rotation. 

Hexagons cannot be combined to form exact hexagons of a larger 

size, but one can combine seven hexagons into a "ragged" hexagon, 

and this process can be iterated, as illustrated in Figure 10. 

A detailed discussion of how to define hexagonal "pyramids" in 

this way can be found in [54] . 

B. Quadtree shape approximation 

When a region is represented by a quadtree, the upper 

levels of the tree, corresponding to large blocks of the image, 

define approximations to the region.  These approximations can 

be used to estimate shape properties such as moments, and to 

speed up shape matching by eliminating gross mismatches 



< 

Figure 10.  Hierarchical hexagonal grid (three levels) 



rapidly [58] .  For example, the coordinates of the centroid 

of a shape can be estimated to a fraction of a pixel using 

quadtree approximations, as illustrated in Figure 11.  This 

should make it possible to track moving shapes quite accurately; 

even though the quadtree itself changes radically when a shape 

is shifted, the moment approximations remain stable.  Similarly, 

the approximations can be used to determine upper and lower 

bounds on the mismatch area; thus if we are matching a given 

shape S. against a collection of stored shapes S;L,S2,..., we 

can eliminate any Si such that the lower bound on the mismatch 

of S. with S. exceeds the upper bound on the mismatch of S. 

with some other shape.  This error bounding process is illu- 

strated in Figure 12. 

C.  Hierarchical image processing and segmentation 

Extensive work is now in progress on the use of pyramid 

structures for image processing and segmentation.  The following 

are some of the chief areas of investigation: 

a) Iterated local convolution operations can be used to 

produce large-kernel convolutions having almost exactly 

Gaussian kernels.  These can in turn be combined to yield 

various types of circular or elongated center-surround 

operators [63]. 

b) Image pyramids can be defined in which the blocks at 

each level overlap; this largely negates the objections 

to conventional power-of-2 pyramids on grounds of shift 

sensitivity. 
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c) In an overlapped pyramid, by associating nodes with 

their most similar ancestors, one can establish 

linked clusters of nodes representing homogeneous 

regions; this facilitates smoothing or segmentation 

of the regions. 

d) Local operations in a pyramid can be used to detect 

simple types of objects in the image, and to extract 

these objects by local thresholding.  This approach was 

applied to blob-like objects in an earlier report; it 

has now been extended to streak-like objects [60]. 

e) Pyramids can be used to define quadtree approximations 

to an image ("Q-images), based on the concept that a 

block is subdivided only if it is unhomogeneous. 

f) The use of Q-images facilitates segmentation by 

thresholding, since the peaks in the histogram of a 

Q-image (where each block contributes its mean gray 

level, a number of times proportional to its size) 

tend to be sharper and more cleanly separated.  The 

histogram is further improved when we eliminate small 

blocks, since these tend to lie on region borders.  Con- 

versly, if we histogram only the small blocks, we obtain 

a unimodal histogram whose mean is a good threshold 

[68].  More generally, we can find blocks in the quad- 

tree corresponding to peaks in the histogram, and 



apply local thresholds in the vicinity of these 

blocks to extract the appropriate regions [66]. 

g)  Q-images can also be used to improve edge detection, 

based on establishing correspondences between edges 

in the Q-image and edges in the original image [64]. 

On the use of Q-images as aids in image smoothing 

see [71]. 



3.  Plans 

This section summarizes the planned Maryland/Westinghouse 

efforts on the next phase of the project, under the title 

"Understanding features, objects, and backgrounds" (the West- 

inghouse subcontract will be entitled "Evaluation and real-time 

implementation of image understanding algorithms"). Section 3.1 

dicusses the importance of developing advanced image analysis 

capabilities for reconnaissance applications.  Section 3.2 

outlines the proposed approach, and Section 3.3 is a Statement 

of Work summarizing the principal tasks to be undertaken. 



3.1  The problem 

The proposed research seeks significant improvements in 

the processing of sensor images that are involved in both recon- 

naissance and weapon delivery.  Military relevance in these 

areas is obvious; however, in recent months the demand for 

progress in the area of weapon delivery has become most urgent. 

The reason is that several emerging military programs are now 

predicated on the near-term availability of semi-autonomous 

or autonomous target acquisition and recognition capability. 

Examples are the Air Force LANTIRN program and the application 

of fire-and-forget performance to Army missiles and large 

caliber projectiles.  The decision by the services to place 

this degree of reliance on image recognition appears to weigh 

favorably the major improvements in mission performance which 

might be realized with its use against its present admittedly 

developmental status. 

The performance of present image recognition algorithms, 

which is to some extent a direct result of earlier work on this 

Maryland/Westinghouse program, is probably adequate for scenarios 

which are limited in range and scene content.  In more demanding 

situations it will be lacking.  But for any situation improved 

recognition performance will translate directly into the in- 

creased probability of mission success, and where men and equip- 

ment are involved, of increased chances for survivability. 

How does the target recognition capability that is needed 

for weapon delivery relate to the more complex evaluation of 



reconnaissance images?  It appears that the recognition algo- 

rithms are a subset of the reconnaissance set.  Target extrac- 

tion is a key element in reconnaissance, but so is the extrac- 

tion of information which is only indirectly related to targets. 

As the problems shift from tactical to strategic in nature, 

their subtlety increases further.  Present algorithms are satis- 

factory for only the simplest of tactical problems.  Improve- 

ments in performance for any application will require increasing- 

ly complex algorithms that make use of all relevant image 

information.  This is the challenge to the algorithm designers. 

It is an exercise in pure research in image understanding, but 

with the prospect that positive results will be applied to real 

problems with very little delay. 

Following the initiation and feasibility testing of an algo- 

rithm concept, extensive statistical testing is desired, on 

realistic data bases, in order to establish performance measures. 

In view of the complexity of the algorithms which are currently 

under evaluation, the statistical test programs require special 

processing considerations in order to minimize execution times 

and computational cost. 

In addition to the considerations noted above, the weapon 

delivery scenario brings with it special demands, including the 

requirement for real-time performance with equipment having 

severe limitations in size, weight, power, and cost.  The algo- 

rithm designer must be aware of, and responsive to, the feasi- 

bility of the implementation of his designs in real-time hardware. 



3.2  The approach 

A.  Maryland 

Maryland's approach to image understanding and analysis 

emphasizes highly parallel, cooperating processes which are 

especially suitable for real-time implementation, particularly 

a few years from now when parallel cellular hardware becomes 

readily available, so that it becomes possible to assign a 

processor to each image pixel.  Since such processes make use 

of very little knowledge at the pixel level, they are subject 

to errors, which would normally imply the need for backtracking 

at later stages of the analysis; this would be both difficult 

and time consuming.  To avoid this problem, the initial indi- 

vidual decisions are made fuzzily or probabilistically, and 

are then checked for consistency with other decisions by an 

iterative "relaxation" process-  This strategy of deferred com- 

mitment and use of convergent evidence is designed to minimize 

the backtracking problem. 

Another way in which convergent evidence can be employed 

at the early stages of image analysis is through the joint use 

of operators of several types, possibly having a range of sizes. 

For example, gray level clustering (i.e., thresholding) and 

edge detection are used jointly in the SUPERSLICE and SUPERLINK 

algorithms.  As another example, spot detectors of several 

sizes can be used to detect bloblike objects in an image, and 

local thresholds can then be selected, based on the detector 

responses, to extract the objects.  This last example illustrates 



how simple types of size and shape information about the 

objects that it is desired to extract can be used to influence 

the extraction process so as to favor their extraction. 

Texture analysis too provides some good possibilities for 

the use of cooperative, parallel computation.  Conventional 

texture features are simple gray level or local property 

statistics computed over small windows of an image.  A poten- 

tially more powerful approach to understanding texture is to 

decompose the given texture into "primitive elements", and 

measure properties of these primitives, as proposed by Maleson 

et al.  (As a compromise, one can measure gray level or local 

property statistics at selected points which are expected to 

be in given positions relative to the primitives, e.g. on or 

near their borders; this is the "generalized cooccurrence" 

approach of Davis et al.)  Parallel methods of texture primitive 

extraction, by clustering pairs of antiparallel edges, yield 

excellent sets of primitives.  Cooperative methods can also 

be used to increase the reliability of texture features measured 

over small image windows; this makes it possible to use smaller 

windows and thus reduce the occurrence of mixed windows in an 

image.  These approaches are being extended to multiple resolu- 

tions and multiple window sizes. 

Edge clustering is also an economical approach to the 

detection of cultural features such as roads and buildings in 



imagery.  An approach is under investigation in which edge 

information is iteratively enhanced, by a relaxation-like 

process, and edge pixels are then linked into edge segments. 

These segments are then clustered, in a Hough-like space, on 

the basis of collinearity and antiparallelness, yielding pieces 

of linear features.  Finally, a relaxation approach is used to 

probabilistically label these pieces as to feature type, and 

iteratively adjust the probabilities so as to reconcile the 

labels of related pieces, thus obtaining a consistent global 

labeling. 

The relaxation approach is also being used for shape recog- 

nition and matching.  The border of a given shape, or collection 

of touching shapes, is ambiguously segmented, and the segments 

are probabilistically labelled.  The probabilities are then ad- 

justed based on their compatibilities with those of related 

segments.  This yields a relatively unambiguous labeling from 

which it is easy to find segment sequences that correspond to 

shapes of the desired types.  This approach is being extended 

to handle hierarchical shape descriptions.  Cooperative tech- 

niques can also be used at a lower level to produce the original 

shape segmentations. 

Compact hierarchical representations for images and regions, 

based on quadtree data structures, have been extensively studied 

on the current project.  It is planned to extend this work 

from exact to approximate representation; a block is subdivided 



if its contents are sufficiently nonuniform.  (This is, of 

course, the well-known approach to image segmentation by recur- 

sive splitting.)  Algorithms will be developed for efficiently 

computing properties of images directly from this representa- 

tion, and for converting between this and other representations. 

These will generalize the algorithms developed for the case of 

exact representation on the current project, and will make the 

work applicable to a wide class of images. 

The principal goal of the project will be the study of 

algorithms that can be used for object detection on tactical 

imagery, and that are potentially implementable in real time. 

There will be close collaboration with the U.S. Army Night 

Vision and Electro-Optics Laboratory, as monitoring agency, 

as well as with Westinghouse, in selecting appropriate problems 

from this domain. 

Many of the algorithms developed on this project will also be 

applicable to the planned DARPA/DMA Image Understanding testbed. 

It is proposed to contribute a collection of such algorithms 

for the testbed in the form of an interactive program that will 

allow the user to define his problem, prompt him to provide 

traning samples (e.g., of objects and background, of textures, 

etc.) for analysis, recommend applicable techniques, apply them 

to the image, and display the results for evaluation.  This will 

provide an extensible capability for interactive selection and 

evaluation of segmentation and texture analysis techniques as 



modular front ends to an image analysis process.  This capa- 

bility should be useful in connection with most of the imagery 

that other contributors to the testbed will analyze, or that 

users of the testbed may want to analyze. 

B.  Westinghouse 

During the current DARPA program Westinghouse has explored 

the feasibility of the LSI implementation of a series of algo- 

rithms developed by Maryland for higher level image processing, 

particularly in the area of relaxation processes.  Concurrent 

with this effort a second potential task of algorithm evalua- 

tion has emerged.  This is because the Maryland algorithms 

are sufficiently complex as to require many minutes to process 

a single sample window on a general-purpose computer.  Since a 

statistical test, as developed by NVEOL for example, may 

include 400 to 1000 image samples, detailed consideration must 

be given to the test approach.  A solution to this problem has 

been proposed at Westinghouse, using fully programmable array 

processors as a means to achieve high throughput with great 

flexibility.  It offers the additional advantage of a means 

for LSI implementation with little or no reprogramming, since 

Westinghouse is developing a series of LSI chips (Universal 

Arrays) for implementation of array processors. 

The proposed program of algorithm evaluation and implemen- 

tation has emerged in the form indicated by Figure 13. This 

diagram portrays the evolution of a miniaturized image proces- 

sor from the initial concept to hardware.  The steps performed 
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by the University of Maryland are shown across the top of the 

figure.  Following algorithm development, Maryland will perform 

feasibility testing with a limited data base, using a general- 

purpose computer for simulation.  With the test results in 

hand, as well as the algorithm statement itself, Westinghouse 

will develop the necessary programming to perform a statistical 

test of the algorithm with a data base selected or approved 

by NVEOL, and involving tactical imagery.  Westinghouse may also 

assist in data base compilation if necessary, using its labora- 

tories for conversion of video data into digital format. 

In addition to examining algorithms generated by Maryland, 

Westinghouse proposes to examine algorithms described by other 

university participants in the Image Understanding Program. 

Algorithms of interest will be statistically tested on the 

same data bases.  Test results will be provided to all program 

participants. 

The algorithm design, together with the statistical test 

results, will form the basis for a design feasibility study 

for implementation of miniaturized hardware.  This effort will 

be aided by company-sponsored investigations of the available 

LSI families, and their associated system architectures.  The 

results will be made available to various military agencies, 

such as NVEOL, for further design and construction effort. 



3.3 Statement of Work 

A.  Maryland 

The proposed project will emphasize the development of 

image analysis algorithms suitable for real-time implementation. 

Specific areas of investigation will include: 

a. Segmentation techniques for object extraction that 

make use of convergent evidence--e.g., gray level 

clustering in conjunction with edge, spot, or streak 

detection, at multiple resolutions. 

b. Texture analysis techniques for background analysis 

and terrain classification, based on the extraction and 

characterization of primitive texture elements, as well 

as on the use of multiple-resolution interactions to 

enhance texture property measurements. 

c. Methods of extracting macroscopic image features such 

as roads and buildings by clustering of edges into 

feature segments, and using relaxation-like techniques 

to find consistent labellings of these segments. 

d. Shape recognition techniques based on ambiguous seg- 

mentation and on the use of relaxation methods to find 

consistent sets of segments.  Relaxation will also be 

applied to pattern detection problems, e.g., to detect- 

ing arrays of jointly occurring small objects which 

satisfy given constraints on their relative positions. 

e. The use of compact representations such as quadtrees 

for image approximation and compression, as well as for 



the exact representation of regions so as to provide 

efficient methods of handling region databases, 

f.  In conjunction with NVEOL and Westinghouse, a set of 

practical analysis tasks will be selected, together 

with appropriate databases.  The "Alabama" data base, 

consisting of FLIR images of tactical targets at low 

and high resolution, will be used initially, since 

test results with it have been obtained for several 

existing algorithms.  The "Ft. Polk" and "A.P. Hill" 

data bases increase the variety of tactical targets that 

can be observed, as well as the background conditions. 

Target motion and obscuration are also present.  Addi- 

tional databases available at Westinghouse can further 

increase the variety of sensor types, target character- 

istics, and environmental conditions. 

It is desired by NVEOL to acquire additional data- 

bases which provide contextual information to assist in 

target classification, including the occurrence of mili- 

tary target groups or clusters.  Use of such contextual 

information is an important aspect of higher level 

image understanding. 

Algorithms will be tested on small data sets, and 

promising algorithms will be recommended to Westinghouse 

for further testing and for possible hardware design. 



g.  It is also planned to provide a collection of algorithms, 

particularly in areas (a-c), for use in the DARPA/DMA 

testbed, in the form of an interactive package.  As 

presently envisioned, the package will provide users 

with a menu of basic segmentation, texture analysis, and 

feature extraction techniques.  Users will not need to 

be familiar with these techniques; they will be prompted 

to provide information on the basis of which the system 

will make choices and present results for evaluation. 

For example, if a user wishes to extract objects from a 

background, he will be asked to define (via cursor) 

samples of the objects and background; the system will 

then select an appropriate segmentation technique, 

apply it to the image, and request him to critique the 

results—e.g., to indicate errors (via cursor)—so that 

the technique can be refined as necessary.  It is planned 

to work closely with SRI, as testbed implementors, so 

that this package can be closely integrated with the 

testbed software. 

B.  Westinghouse 

The proposed program will be directed toward the evalua- 

tion and implementation of image processing algorithms developed 

by the University of Maryland or others involved in the DARPA 



Image Understanding program.  Initial effort will be concerned 

with the inclusion of relaxation operations in the preprocessor 

functions.  Results will be compared with the Maryland "Super- 

slice" and Westinghouse AUTO-Q algorithms.  In addition, close 

attention will be given to the "primal sketch" operations 

described by MIT. 

Specific tasks will include: 

a. Review of Maryland and other IU programs for candidate 

algorithms. 

b. Acquisition and refinement of data bases appropriate 

to both weapon delivery and reconnaissance scenarios, 

and determination of candidate scenarios in coordina- 

tion with NVEOL.  Such scenarios include the helicopter 

pop-up operation, and target handoff from an aircraft 

sensor to a missile seeker. 

c. Statistical testing of algorithms using appropriate 

simulation tools, such as array processors.  Results 

to be reported to algorithm designer. 

d. Perform design feasibility analyses for hardware imple- 

mentation of successful algorithms, with consideration 

of available LSI families.  Provide recommendations 

for applications of successful algorithms to military 

systems. 

e. Deliverable items under the contract will be the test 

results on candidate algorithms and hardware design 

information, including resources required for imple- 



mentation.  Reports will contain comparative evalua- 

tions of algorithms.  Transportable software will be 

provided. 

Success on the program will be measured by the performance 

improvements which are statistically demonstrated in terms of 

target detection and classification rates, and the reduction 

of false alarms.  Such improvements will constitute advances 

in the state of the art, and will thus assure that hardware 

implementation will occur.  This sequence of events was demon- 

strated during the first phase of this program, with the "Super- 

slice" algorithm. 



4.  Publications 

This section lists status reports, technical reports, and 

papers published on the current phase of the project, under 

the following headings: 

A. Semiannual reports (as well as the Final Report on the 

previous phase of the project), project status reports, 

and quarterly reports on the Westinghouse subcontract 

B. Technical reports 

C. Papers 

For convenience, a brief outline of the individual research 

areas on the project is given in Sections 4.1-2, with references 

to the reports that relate to each area. 



4.1  Object detection 

a. Preprocessing 

Topic 

Noise cleaning techniques 

"Probability transforms" 

Gaussian convolution 

Report Nos. 

29,29,34,71,72 

38 

63 

b. Edge detection 

Corner, line, 
and strip 
detection 

Color edge detection 18 

Straight edge enhancement 22 

Step-fitting edge detection 33 

Pyramid edge enhancement 64 

Edge maxima 67 

Strip detection 27 

Antiparallel linking 57 

Collinearity linking 6 7 

Gray-level corner detection 69 

Clustering of collinear 
segments 70 

d. Pixel clas- 
sification 

ISODATA thresholding 

Relaxation thresholding 

Relaxation "busyness" 
clustering 

Pyramid thresholding 

35 

55 

65 

68 

e. Segmentation SUPERSLICE 19 

SUPERLINK 24 

Blob detection by relaxation 50 

Pyramid blob and streak 
detection 52,60 

Pyramid "SUPERSLICE" 66 



4.2  Tools for image 
understanding 

a.  Image models 

Topic 

Mosaic model fitting 

Report Nos 

32,47 

b.  Texture analysis  Generalized cooccurrence    30 

Primitive extraction        40 

Feature smoothing 56 

c.  Shape analysis Segmentation by relaxation   39,4 8 

Segmentation by global 
features 59 

Region repre- 
sentation 

Quadtrees and pyramids 

Medial axes 

28,31,36,37, 
41-46,49,51, 
54,58,62 

61,73 

e.  Matching Point patterns 

Relational structures 
21,23,26 

17,25 

Software Control structures 

Utility packages 

16 

53,55 



A,  Project reports 

Al.  Final Report on first phase 

1.  Algorithms and Hardware Technology for Image Recognition, 
Final Report, March 31, 197 8. 

A2 Semiannual reports and project status reports; Image 
Understanding Using Overlays 

2. Semiannual report, 1 April-30 September 1978. 

3. Semiannual report, 1 October 1978-31 March 1979. 

4. Semiannual report, 1 April-30 September 197 9. 

5. Project status report, 1 April-30 September 1978, in 
Proceedings, Image Understanding Workshop, November 1978, 
20-27. 

6. Project status report, 1 October-31 March 1979, in Proceedings, 
Image Understanding Workshop, April 1979, 14-24. 

7. Project status report, 1 April-30 September 1979, in 
Proceedings, Image Understanding Workshop, November 1979. 
166-175. 

8. Project status report, 1 October 1979-31 March 1980, in 
Proceedings, Image Understanding Workshop, April 1980,1-12. 

A3.  Quarterly reports on Westinghouse subcontract: Architecture 
for Higher Level Digital Image Processing 

9. First quarterly report, July 30, 1978. 

10. Second quarterly report, October 30, 1978. 

11. Third quarterly report, January 30, 1979. 

12. Fourth quarterly report, April 30, 1979. 

13. Fifth quarterly report, July 31, 1979. 

14. Sixth quarterly report, October 31, 1979. 

15. Seventh quarterly report, January 31, 1980. 



B.  Technical reports 

16. Martin Herman, "A System for Control Structure Implemen- 
tation for Image Understanding."  TR-646, March 1978. 

17. Les Kitchen, "Discrete Relaxation for Matching Relational 
Structures."  TR-665, June 1978. 

18 P. V. Sankar, "Color Edge Detection: A Comparative Study." 
TR-666, June 1978. 

19. D. L. Milgram, "Region Extraction Using Convergent 
Evidence."  TR-674, June 1878. 

20 Judith P. Davenport, "A Comparison of Noise Cleaning 
Techniques." TR-689^ September 1978. 

21. Daryl J. Kahl, Azriel Rosenfeld, and Alan Danker, "Some 
Experiments in Point Pattern Matching." TR-6 90, September 
1978. 

22. Shmuel Peleg and Azriel Rosenfeld, "Straight Edge Enhancement 
and Mapping."  TR-694, September 1978. 

23. Sanjay Ranade and Azriel Rosenfeld, "Point Pattern Matching 
by Relaxation." TR-702, October 1978. 

24. David L. Milgram, "Edge Point Linking Using Convergent 
Evidence." TR-704, October 1978. 

25. Les Kitchen, "Relaxation Applied To Matching Quantitative 
Relational Structures." TR-707, October 1978. 

26. Daryl J. Kahl, "Sketch Matching."  TR-716, November 1978. 

27. Alan Danker and Azriel Rosenfeld, "Strip Detection Using 
Relaxation."  TR-725, January 1979. 

28. Charles R. Dyer, Azriel Rosenfeld, and Kanan Samet, "Region 
Representation: Boundary Codes from Quadtrees."  TR-732, 
February 19 79. 

29. Ann Scher, Flavio  R. D. Velasco, and Azriel Rosenfeld, 
"Some New Image Smoothing Techniques,"  TR-733, Februarv 
1979. 

30. Charles R. Dyer, Tsai-Hong Hong, and Azriel Rosenfeld, 
"Texture Classification Using Gray Level Cooccurrence 
Based on Edge Maxima."  TR-738, March 1979. 
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Appendix.  Summaries of Quarterly Reports on Westinghouse 
Subcontract: "Architecture for Higher Level 
Digital Image Processing" 

1. First Quarterly Report, July 30, 1978. 

The report begins with a review of desired system design 

goals.  This is followed by a description of available micropro- 

cessor hardware, a review of the LISP approach to the manipulation 

of list structures, and a preliminary discussion of the processing 

required to implement relaxation methods of object classification. ' 

The report concludes with a description of specific bit-slice 

processors. 

2. Second Quarterly Report, October 30, 1978. 

This report begins with a continuation of a description of 

bit slice microprocessors with the emphasis on control units 

this time, and an examination of commercially available units. 

Several more Maryland algorithms, namely non-linear probabilistic 

relaxation, connected components, and Superlink are described. 

Hardware implementations for non-linear probablistic relaxation 

and connected components are described in the next section.  The 

final section shows some tentative conclusions, in light of the 

above continuing analysis, regarding an appropriate architecture 

for image processing both for the image processing module and 

the array of modules. 



3. Third Quarterly Report, January 30, 1979. 

This report begins with a description of the computations 

for performing relaxation at the pixel level in order to divide 

an image into dark and light regions.  The computations are re- 

structured to conform to a matrix multiplied by a vector, mul- 

tiplied by a scalar.  A "Systolic"* array of processors is 

applied to this computational structure and the results described, 

The individual processors take a particular form of the Westing- 

house Universal Array currently being developed for 20 mega- 

operations/sec. signal processors.  One personalization of the 

Universal Array in the systolic array architecture is a self- 

contained, 4x4 multiply chip with a 12-nanosecond 8-bit product. 

The computations are also restructured to delete frame storage 

and permit computational speeds approaching real time, while 

still maintaining a small volume. 

4. Fourth Quarterly Report, April 30, 1979. 

This report considers hardware implementation of Relaxation 

Processes using cellular automata architecture with Universal 

Arrays as the central solid state module.  The work examines the 

edge/no edge and light/dark algorithms.  In particular, an 

effort has been directed to the development of a cellular array 

*Kung, H. T., and Leiserson, C. E., Systolic Arrays for VLSI, 
Dept. of Computer Science, Carnegie-Mellon University, Dec, 
1978.  "Systolic Array" is a term used by H. T. Kung to describe 
a network of processors which rhythmically compute and pass 
data through the system. 



module which shows promise.  It can be operated at speeds 

comparable to frame rates, and in part can be composed of a 

Universal Array multiplier and a Universal Array multiplexer. 

5. Fifth Quarterly Report, July 31, 1979. 

This report deals primarily with the definition of digital 

architecture for implementing the image processing algorithms 

developed at the University of Maryland.  A need has also 

emerged to provide support to the University of Maryland in the 

statistical testing of complex algorithms.  This had led to an 

investigation of programmability of these algorithms on a fully 

programmable array processor (PAP) developed at Westinghouse. 

6. Sixth Quarterly Report, October 31, 1979. 

This report covers results of special analysis performed as 

part of the recent work to support the University of Maryland in 

the statistical testing of complex algorithms.  The planned 

steps in this support program are: 

Selection of processing algorithms for evaluation. 

Analysis and adaptation of algorithms for execution on 

the Programmable Array Processor (PAP). 

Evaluation of algorithms on a PDP-VAX GP computer. 

Throughput analysis; PAP vs. VAX. 

Processing of a set of imagery. 

Results are reported at regular intervals as appropriate. 



This report analyzes the segmentation properties of gray 

level relaxation applied to the two-label case.  The results 

produce threshold, speed and stability criteria to facilitate 

subsequent processing.  Most of these results are experimentally 

verified in a report by Azriel Rosenfeld and Russell C. Smith. 

Evaluation and verification is in progress at Westinghouse 

using comparable imagery and test patterns.  The current status 

of the computer program modeling and test results will be covered 

in a separate report to be completed shortly.  Efforts underway 

and planned for the immediate future include evaluation of image 

samples on the VAX,- throughput analysis for the PAP, and relaxa- 

tion processing for multiple label cases.  The analysis and sub- 

sequent testing is intended to apply to monochrome TV or FLIR 

imagery (hence, one-dimensional data) and usually only one 

object polarity (two labels) with extension to both object 

polarities in the same imagery (three labels). 

7.  Seventh Quarterly Report, January 31, 1980. 

This report contains results of relaxation processing per- 

formed by Westinghouse to demonstrate speed, threshold, and con- 

vergence properties using test patterns and FLIR imagery.  This 

evaluation was performed on the PDP-VAX GP computer in preparation 

for the processing of a set of imagery on the Westinghouse Pro- 

grammable Array Processor (PAP). 
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